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Abstract 

A rod in cross flow is a technique known for its simple and effective means of suppressing cavity 

tones. Although several hypotheses have been put forward regarding its working principle, no 

validated explanation exists. In the present study we investigate whether the cylinder, through its 

wake, changes the stability characteristics of the shear layer that develops over the cavity. The 

present study pertains to a shallow cavity of length to depth ratio of 2, for subsonic Mach numbers 

ranging from 0.5 to 0.8. The upstream boundary layer was found to be turbulent for all cases 

considered. We use linear stability theory in the spatial, compressible and inviscid formulation 

for our study. We construct artificial velocity profiles that are prototypical of the experimentally 

measured velocity profiles, to investigate how the wake of the cylinder influences the stability of 

the shear layer. Comparison of these integrated growth rates with the acoustic suppression data 

showed that the link between the two is weak. Thus the ability of the rod to suppress cavity 

resonance is not directly explained by linear stability analysis of the modified shear layer, for the 

configurations considered. 



I. INTRODUCTION 

Flows over cavities have been the subject of active research for several decades for the 

richness of the physics involved and their occurrence in many practical situations. Under 

certain conditions these flows produce intense acoustic tones, also known as cavity tones, at 

discrete frequencies. The significance of cavity flows is not just limited to the acoustic fields 

they produce. The distinctive pressure and velocity fields produced by this phenomenon are 

of equal importance. 

There are a number of practical situations where flows over cavities are a concern. The 

flow over the wheel-well of an aircraft during take-off or landing is one of the most common 

examples of such a situation. The study by Heller and Dobrzynski1 suggested that the wheel- 

well was an important source of noise during landing approach. As mentioned earlier, it is 

not just the large acoustic amplitudes, but also the altered flow field that could interfere with 

the performance of systems placed in the vicinity of the cavity. Under certain conditions, 

the presence of cavity is found to increase drag (McGregor and White2) and change the 

aerodynamic as well as stability characteristics of projectiles (Sahoo, Annaswamy and Alvi3). 

Steep density gradients and vortex-like structures associated with the intense acoustic waves 

emanating from the cavity are found to interfere with airborne optical systems mounted on 

aircraft. In ramjet combustors, the coupling between the cavity tones and the combustion 

dynamics is a serious concern since it may limit the performance of the engine (King, Creel 

and Bushnell4, Najm and Ghoniem5). In the case of gas transportation through conduits 

attached with closed side branches, the cavity instability phenomenon may be manifested in 

the form of unsteady gas flow (Kriesels et al.G) and structural vibrations (Martin, Naudascher 

and Padmanabhan7). 

II. BACKGROUND AND MOTIVATION 

Historical perspectives on the physics of cavity flows can be obtained from the papers 

of Rockwell and Naudascher8 and Chokani9; these papers provide a comprehensive review 

encompassing a range of topics such as classification of the cavity flows, parameters that 

influence the cavity oscillations, theoretical models and suppression strategies. More re- 

cently, the reviews by Cattafesta et al.10 and Rowley and Williams11 have focussed on the 



classification and methodology of cavity resonance control techniques. 

A.     Physical Mechanism 

Cavity tones are an example of a self sustained acoustic oscillation phenomenon that 

relies on the feedback loop comprising of interaction of the unstable shear layer with the 

aft wall and upstream propagation of acoustic waves towards the leading edge of the cavity. 

Figure 1 shows the schematic of this acoustic feedback loop. As shown in this figure, when 

the unsteady shear layer impinges on the downstream edge of the cavity, it gives rise to 

pressure disturbances. When these pressure disturbances, i.e., acoustic waves, reach the 

upstream edge of the cavity, they strengthen the nascent shear layer instabilities. Thus, 

the feedback loop between downstream-traveling hydrodynamic disturbances in the shear 

layer and the upstream-traveling acoustic disturbances is closed. This feedback loop gives 

rise to intense acoustic tones of discrete frequency, known as cavity tones. Jet impingement 

tones (Tarn and Ahuja12), screech tones (Raman13), edge tones (Crighton14), and ring tones 

(Howe15) are some of the other self sustained acoustic oscillations which share the same 

physical mechanism as the cavity tones. 

Some of the earliest predictions of the cavity tone frequency were based on the normal 

modes of cavity resonance (East16). However, these predictions were restricted to deep 

cavities at very low Mach numbers. At higher Mach numbers the cavity tone spectrum 

showed the presence of multiple tones. These tones were not harmonics of each other, hence 

could not be explained using normal acoustic modes of the cavity. Powell17 explained the 

mechanism of self sustained acoustic resonance within the framework of the acoustic feedback 

loop. Using the edge tone phenomenon, he argued that the time taken by the large scale 

structures to reach the edge and time taken by the acoustic waves to propagate back to the 

nozzle lip should be an integral multiple of the resonant time scale. Any mismatch in time 

could be reconciled by incorporating a term that accounts for the phase shift between the 

hydrodynamic and acoustic waves. Rossiter18 was the first to apply this model to cavity 

tones. In its mathematical form, the cavity tone resonance frequency is predicted using the 

following equation: 

stL = fr = 1 —. 1) 



Here, the subscript '+' denotes freestream properties, whereas the subscript '-' denotes 

properties within the cavity. The coefficient 'K' is the ratio of the velocity of the convective 

disturbance (Uc) and the freestream velocity (£/oo), and V is the phase ambiguity between 

the hydrodynamic and acoustic waves. The model was intended to be semi-empirical in 

nature, in the sense that the coefficient (K) was found using experimental measurements, 

and the constant (u) was chosen arbitrarily to be a value that best fit experimental data. 

However, in the absence of experimental measurements to determine the convective velocity, 

the value of 'K' can also be arbitrarily chosen such that the theoretical frequency calculated 

using equation (1) matches experimental data. Bilanin and Covert19 made an attempt 

to calculate the value of K and v through a theoretical analysis for Mach numbers ranging 

between 0.8 and 3. According to them, the presence of two or more non-harmonic frequencies 

in the cavity tone spectrum can be attributed to the participation of corresponding vortex- 

sheet displacement modes. Despite the fact that this model was free from any empirical 

constants, it had some shortcomings. It did not take into account the effect of cavity depth 

or shear layer thickness. Later, Tarn and Block20 extended this model to include the effect 

of momentum thickness, 6, and aspect ratio, L/D, by taking the reflection of acoustic waves 

from the floor of the cavity into account. 

B.     Cavity Resonance Suppression Efforts 

There have been numerous documented attempts to suppress resonant cavity tones using 

various flow control techniques, both passive as well as active21 in nature. One of the simplest 

methods to suppress high amplitude cavity oscillations is to put a spoiler of appropriate 

height at the leading edge of the cavity. It has been shown that spoilers having saw-toothed 

shaped upper surfaces which span the entire width of the cavity, physically loft the shear 

layer, thereby reducing the interaction between the shear layer and cavity downstream edge, 

thus providing resonance suppression. Early efforts on exploring the efficacy of the cylinder 

in crossflow as a device to suppress the cavity tones were undertaken by McGrath and 

Shaw22. Ukeiley et al.23 compared the performance of a simple fence-type spoiler with that 

of the cylinder in crossflow and found that despite the prominent shear layer lift-off effect 

produced by the spoiler, the cylinder in crossflow proved to be more efficient in suppressing 

the cavity tones. 



Stanek et a/.24-26 did extensive work on cavity tone suppression using a cylinder in cross- 

flow. They were able to demonstrate the effectiveness of the cylinder in crossflow as an 

actuator for wide range of Mach numbers and cavity dimensions. By securing correctly 

designed end plates, they were able extend the suppression performance of cylinder beyond 

the subsonic range of freestream Mach numbers. They also attempted to understand the 

governing physical mechanism leading to cavity resonance suppression using the cylinder in 

crossflow. They hypothesized that the resonance suppression resulting from the use of the 

cylinder in crossflow was due to either (i). Lifting-off of the shear layer, (ii). High frequency 

forcing of the shear layer, or (iii). Altered stability characteristics of the shear layer.The 

conjecture of shear layer lift-off was explored by Arunajatesan, Shipman and Sinha27. They 

concluded that in the presence of cylinder at the upstream edge of the cavity, the oncoming 

flow was obstructed and deflected upwards, thereby impairing the efficiency of its interaction 

with aft wall necessary for the cavity tone generation. 

The hypothesis of high frequency forcing as an agency behind the cavity tone suppression 

has its roots in the work of Wiltse and Glezer28. They found a dramatic alteration in the 

development of a turbulent shear layer upon perturbing it at very high frequency. They 

showed that exciting the shear layer in its transitional region at a frequency three to four 

times higher than its natural unstable frequency, resulted in dramatic increase in the turbu- 

lence dissipation rates. Numerical simulations of Cain et al.29'30 showed that in addition to 

an increase in the turbulence dissipation rates, there was also a reduction in the turbulence 

production rates associated with high frequency excitation. Stanek et a/.31 argued that vor- 

tices shed by the cylinder at very high frequency may provide the necessary perturbations 

to the shear layer developing over the cavity to constitute the case of high frequency forcing. 

The high frequency forcing, in the form of vortex shedding, is considered to interfere with 

the development of the instability waves within the shear layer; and consequently with the 

mechanism of cavity tone generation. 

The wake behind the cylinder changes the mean velocity profile of the shear layer. It 

has been argued that the time averaged shear layer profiles downstream of the cylinder in 

crossflow configuration are more stable compared to the mixing layer profiles observed for a 

baseline configuration with no control. Thus, the cavity tone suppression due to the cylinder 

could be attributed to the modification of the shear layer velocity profile and its stability 

characteristics. 



C.     Methodology of Current Work 

In the present study we intend to investigate the working principle of the rod in cross flow 

actuator, with the focus on evaluating the stability hypothesis using experimental data and 

theoretical calculations. The current paper begins with a description of the experimental 

facilities and instrumentation used in our study This is followed by a section which intro- 

duces the spatial linear stability problem for two-dimensional, locally parallel, compressible, 

inviscid flows. In this section we discuss the nature of the mean velocity profiles for the 

classical shear layer flow as well as the modified flow downstream of the cylinder in crossflow 

configuration. For this latter configuration, the modified mean velocity profiles downstream 

of the cylinder are referred to as the 'hybrid profiles' and contain five adjustable parameters 

that can be suitably varied in order to best fit the experimentally measured mean velocity 

profiles. The discussion section which follows is divided into four subsections. In the first 

subsection, we present results and discuss the acoustic data acquired for the baseline flow 

(i.e. flow without any control technique) and the control flow (obtained by placing the cylin- 

der at several different locations). Next, the stability characteristics of the hybrid velocity 

profile are discussed with regard to the number of unstable modes as well as the changes 

in these instability characteristics with change to the profile parameters. This is done by 

creating synthetic profiles by changing the various parameters and studying the correspond- 

ing changes in the stability characteristics (instability growth rate and phase velocities). 

Following this, we turn our attention to the stability characteristics of the experimentally 

measured mean velocity profiles. In this regard we first present mean velocity profiles mea- 

sured downstream of the cylinder in crossflow. These profiles were measured by changing 

the transverse and streamwise location of the cylinder. Finally, we discuss the relevance of 

our stability results when examined in the light of the resonance suppression benefits of the 

cylinder in crossflow configuration. 

III.     EXPERIMENTAL FACILITIES AND INSTRUMENTATION 

The present set of experiments were conducted at the High Speed Flow Facility in the 

Fluid Dynamics Research Center of the Illinois Institute of Technology. Compressed air 

passes through a plenum before exiting into the ambient from a rectangular slot nozzle 



having dimensions 10.17 mm. x 50.80 mm. (0.4 in. x 2.0 in.). The interior of the nozzle has 

an elliptical contour in order to ensure smooth flow at the exit. Figure 2 shows a schematic 

of the experimental setup along with the location and orientation of the coordinate axes. 

An aluminum block containing the cavity (L/D = 2) in the form of a rectangular cutout 

is mounted flush with the bottom edge of the nozzle. The cavity is located equidistant 

from the transverse edges of the nozzle and has dimensions of length L — 25.4 mm, width 

W = 25.4 mm, and depth D = 12.7 mm (1.0 in. x 1.0 in. x 0.5 in.). The jet flow over 

the block provides the freestream of air that flows over the cavity. It was verified that the 

area where the cavity was located lay within the potential core of the jet thereby ensuring 

a uniform freestream flow over the cavity. For the cavity tone suppression experiments, a 

cylinder having diameter, d = 0.794 mm (1/32 in.), and length of 34.93 mm (1.375 in.) 

was used. It was secured upstream of the cavity leading edge using two end plates having 

dimensions 12.57 mm x 25.4 mm x 3 mm. Note that we wanted the rod diameter to be 

small enough to have the shedding frequency of the rod an order of magnitude higher than 

that of the cavity tone frequency, but at the same time we wanted it to be stiff so that it 

would not vibrate. Additionally, we wanted the rod to be smaller than or at least equal to 

the boundary layer thickness. Stanek et a/.26 examined cylinders of various diameters and 

found the one with d = 2/36, where 5 is boundary layer thickness, to be the most effective. 

Keeping in mind all these design criteria, we found 0.794 mm (1/32 in., which is a standard 

available size) to be a suitable choice. Experiments were performed for cylinders placed at 

several different locations in the X and Y direction to investigate the effect of cylinder on the 

stability and the cavity tone suppression. Various control configurations were obtained by 

changing the gap, g, which is the distance between the ground and the cylinder centerline, 

and its axial location in the X direction. Table I gives details of these different locations, 

along with the nomenclature of the configurations used in the present work. Note that the 

location where g/d — 0.50 corresponds to the case where the cylinder was resting on the 

ground at the leading edge of the cavity. In order to measure the cavity acoustics, a Briiel 

& Kjaer condenser microphone, flush with the cavity floor, was used. The pressure signal 

obtained from the microphone was sampled at 200 kHz for 1.024 seconds and band-passed 

through a 4th order analog Bessel filter. 

To measure the boundary layer and shear layer characteristics in the case of the baseline 

and the various control configurations, a hypodermic pitot probe attached to a Kulite (XCS- 



062-25D) transducer was used. The pitot probe had an internal diameter of 0.1016 mm 

(0.004 in.) and external diameter of 0.2032 mm (0.008 in.). The mean value of the signal 

measured by the miniature probe at a point was used to calculate the stagnation pressure 

and subsequently, the axial velocity, at that point. For the current experiments, using 

the miniature pitot probe, the boundary layer at the upstream edge of the cavity was 

measured to be 0.8 mm thick at M = 0.6. Due to spatial resolution limitations, it was not 

possible to reliably measure the change in the boundary layer thickness at the other Mach 

numbers. For this reason, the boundary layer thickness at M = 0.6 will be referred to as 

the nominal boundary layer thickness, S. Note that the comparison of the experimentally 

measured boundary layer profiles with the 1/7 power law revealed that the boundary layer 

was turbulent at all the Mach numbers. 

IV.     FORMULATION OF THE LINEAR STABILITY PROBLEM 

A.     The Rayleigh Equation 

In an effort to understand the physical mechanism that results in acoustic suppression 

of cavity flow resonances using the cylinder in crossflow configuration, one of the conjec- 

tures that have been put forward is that this configuration alters the mixing layer type 

mean velocity profile of the baseline configuration to one that is more stable. The stabil- 

ity of compressible, inviscid shear layers have been studied extensively in literature(see, for 

instance, Lees and Reshotko32 or Michalke33'34). 

In order to arrive at the stability equation for an inviscid, compressible flow assuming it 

to be two-dimensional and locally parallel, we decompose the perturbation pressure, p, as: 

p(x,y,t)=p(y)ei^^t\ (2) 

where p is the instability pressure eigenfunction that is dependent on the transverse co- 

ordinate alone, a is the streamwise wavenumber and u is the circular frequency of the 

instability. Substituting this decomposition into the linearized continuity, momentum and 

energy equations, we arrive at the compressible Rayleigh equation given by: 

d2p      {    2a    du      1 dp\ dp      ,   9      , ,9   . .o-, A 
-A - { ~^-=T~ +-7/- K- M2p(u + auf}p = 0. 3 dy2      [UJ + audy     pdy) dy      l J 



In equation (3), terms with an overbar denote time averaged quantities. Equation (3) 

is the two-dimensional, compressible Rayleigh equation in its nondimensional form. The 

nondimensionalization has been done as follows: the density p and the streamwise velocity, 

u, have been nondimensionalized using the freestream density and the freestream velocity. 

Poo and C/QO, respectively; the pressure has been nondimensionalized using poJJ^o ] the lengths 

are nondimensionalized using the cavity depth D; the streamwise wavenumber, a, has been 

nondimensionalized using length scale D; angular frequency, ui, has been nondimensionalized 

using D/Uoo. M is free stream Mach number. For a more detailed discussion, in addition to 

results pertaining to the adjoint equations and the biorthogonality relations, the interested 

reader is referred to Rowley35. 

B.     Boundary Conditions 

Given the coordinate axes setup as shown in figure 2, and the nondimensionalization 

scheme, the region of integration extends from y = — 1 to y —• oo. Practically speaking, loo' 

is taken to be a large enough number such that the mean flow properties are uniform at this 

distance. At y = — 1, we use the wall boundary condition, which is given by: 

^ = 0, aty=-l. (4) 
ay 

The boundary condition at y —» oo requires the pressure p to be bounded. Since at y —> oo, 

u = p = I, equation (3) breaks down into a simple, constant coefficient second order 

differential equation. The solution to this equation that is bounded at oo is: 

p = Ae'^, (5) 

where A = J a2 — M2 (u> + a) . Equations (4) and (5) are the boundary conditions necessary 

to solve Rayleigh equation given by equation (3). 

C.     Mean Velocity and Density Profiles 

For a shear flow between two fluids that have the same velocity magnitude and oppo- 

site direction, the mean velocity profile has traditionally been described using a hyperbolic 

tangent type equation.   For shear flows of the kind pertinent to the cavity flow problem, 



given that the velocities of the two fluids are not equal in magnitude, the mean streamwise 

velocity profile is given by the equation: 

«(y) = g 1 + tanh 
2 (y + SLoff) 

(6) 

where Sw is the vorticity thickness of the shear layer and the term SL0jf accounts for the 

transverse offset (if present) of the shear layer. For the cavity tone suppression experiments 

described in the current paper using a cylinder in crossflow, the velocity deficit induced by 

the bluff body introduces a wake downstream of the cylinder. The mean velocity for this 

suppression configuration is a hybrid of the traditional shear layer velocity profile given in 

equation (6) and a wake profile, and is given by: 

u{y) 1 + tanh 
2 (y + SLoff) Wampexp y + Woff 

(7) 

Equation (7) is a combination of the traditional hyperbolic tangent and Gaussian distribu- 

tions, which simulate the mixing layer and wake parts of the velocity profile respectively, and 

shall henceforth be referred to as the hybrid profile. In this equation, Wamp, W0ff and Wwid 

represent the wake amplitude, the wake offset and the wake width respectively. Figure 3 

shows a sample hybrid velocity profile with the various profile parameters given in equation 

(7) indicted. A similar expression was used in the work by Koochesfahani and Frieler36 in 

order to study the stability characteristics of a plane mixing layer which took into account 

the wake component of the initial velocity profile. This wake component in their work was 

produced due to the use of a splitter plate to separate the fast and slow moving flows. 

The mean density distribution, p(y) is, in general, dependent on the flow Mach number 

and its mean velocity and temperature distribution and can be assumed to follow a Crocco 

relation which was given in Tarn and Block20 as: 

-l 

i(7-l)(l-*22)M2 + l (8) 

However, for the moderate Mach numbers that are considered in this work, the density 

distribution has been assumed to be uniform, i.e. p = 1. This was the same assumption 

that was used in Rowley, Colonius and Basu41, where flow Mach numbers up to M = 0.80 

were considered. In the work of Panickar37, it has been shown that at the lower compressible, 

subsonic Mach numbers, the stability results obtained using either of these mean density 

distributions are comparable. 

Ill 



Equation (3), subject to boundary conditions (4) and (5) is a differential eigenvalue 

problem. For spatially developing shear flows, it has been shown in Michalke38 that the 

spatial formulation of the eigenvalue problem is appropriate and that is the approach we use 

for this paper. For the spatial stability problem, we look for solutions to (3) that oscillate 

sinusoidally in time but grow or decay exponentially in space. In mathematical terms, given 

the normal-mode decomposition in equation (2), this means that for a given u> 6 R we look 

for Q G C where R and C are the sets of real numbers and complex numbers respectively. If 

Im (a) < 0, the solution grows exponentially in space and the eigenvalue and eigenfunction 

corresponding to such a solution is referred to as an unstable or undamped eigenvalue and 

eigenfunction respectively. Conversely, if Im (a) > 0, the solution decays spatially and the 

eigenvalue and eigenfunction corresponding to such a solution is referred to as a stable 

or damped eigenvalue and eigenfunction respectively. In this paper, we restrict ourselves 

to finding only the unstable/undamped eigenvalues and eigenfunctions. These unstable 

eigenvalues are computed using the shooting method. 

V.     RESULTS AND DISCUSSION 

A.     Results from Acoustic Studies 

Flow over a cavity can produce discrete tones over a very wide range of parameters of 

cavity dimensions and freestream Mach numbers. However it is not always that these tones 

are produced by the mechanism based on the acoustic feedback loop explained in §11 A. 

For deep cavities with L/D < 1, or for M < 0.2, the tones are produced due to normal 

mode resonance (Tarn and Block20). Under certain conditions the cavity flow is prone to 

an absolute instability - also known as the wake mode (Gharib and Roshko39, Forestier, 

Jacquin and Geffroy40 and Rowley, Colonius and Basil41). Moreover, even if the tones are 

produced due to the acoustic feedback loop, external parameters can affect the primary 

mechanism depending on the experimental configuration. If the freestream flowing over a 

cavity is obtained by a jet, one could encounter a jet-cavity interaction problem, which is a 

separate category by itself (Raman, Envia, Bencic42). One simple way to check if the tones 

obtained in the present experiments are indeed canonical cavity tones is by making sure 

that the tones follow the staging behavior as characterized by the Rossiter's phase locking 

11 



formula given in equation (1). 

Figure 4 shows the frequency staging phenomenon associated with the cavity tones along 

with the theoretical predictions based on the Rossiter formula given in equation (1). The 

conventional values of K and v are 0.58 and 0.318. However for the present set of data. 

K = 0.75 and v — 0.30 are found to give the best fit. The experimental data are in good 

agreement with the theoretical predictions especially at higher Mach numbers. For a lower 

Mach number however, the cavity tone frequency seems to drift away from the theoretical 

predictions. This is in agreement with the work of Tarn and Block20, who showed that 

at these lower Mach numbers, the cavity physics is dominated by normal mode resonance. 

For the remainder of this subsection we shall present results from experiments where the 

freestream Mach number M > 0.5, and the experimentally measured resonant frequencies 

agree well with Rossiter's phase locking formula. Thus, we are assured that the cases under 

study are indeed feedback-reinforced resonant cavity tones. 

Figure 5 shows a comparison of the acoustic spectra at M = 0.6 for the baseline configu- 

ration and two representative control configurations A.2 and A.6. The X-axis is represented 
fD 

nondimensionally in terms of the Strouhal number based on the cavity depth Stp = ——; an 

equivalent dimensional frequency measure (in kHz) is also provided as an alternate abscissa. 

on the top of each spectral plot.   The dominant frequency in the baseline spectrum (/ ~ 3.1 

kHz, Sto ~ 0.20) agrees well with the theoretically predicted first Rossiter mode.   Figure 

5(a) shows the spectra over a frequency range up to 30 kHz. In this figure one can clearly 

see the suppression of the cavity tone spike along with a reduction in broadband acoustic 

levels achieved by both the control configurations. Broadly speaking, figure 5(a) also shows 

that the suppression levels achieved by the A.2 configuration are greater than those of the 

A.6 configuration.  Figure 5(b) shows the same spectra for a wider frequency range, up to 

80 kHz. The instability frequency corresponding to the coherent spanwise vortices shedding 

from the cylindrical rods are seen in this figure at approximately 48 kHz (Strouhal number 

based on cylinder diameter, Std ~ 0.17).   For the size of the cylinder and range of the 

Mach numbers we are working with, the operational range (Reynolds number based on the 

cylinder diameter, Red < 104) of the cylinder is well below the critical transition regime. In 

this regime, it is well known that the frequency of the periodic shedding from the cylinder 

remains approximately constant at Std ~ 0.2. The spectra in figure 5(b) show the spectra 

of the control configurations can be demarcated into two regimes.  The first regime is the 

12 



low frequency regime where the acoustic levels of the control configurations are lower than 

those in the baseline configuration. The second regime is the mid to high frequency regime 

where the acoustic levels in the control configuration are comparable to, or as shown for the 

spectra of the A.6 configuration, higher than, those in the baseline configuration. However, 

it should also be noted that the vortex shedding occurs at a frequency that is more than 

one order of magnitude higher than the frequency of the most dominant instability in the 

baseline configuration, i.e. the first Rossiter mode. 

Figure 6 shows the acoustic characteristics of the baseline configuration. The very high 

tonal SPL values in this figure are indicative of the strong feedback enhanced acoustic 

resonance mechanism present in this baseline configuration. To measure the efficacy of 

the cavity tone suppression device one of the most commonly used metrics is the overall 

sound pressure level (OASPL). However in the present work, although the cylinder in cross 

flow configurations suppress the cavity resonant tones, they add self noise at frequencies 

corresponding to Std ~ 0.17 (the periodic vortex shedding frequency). This corresponds to 

frequencies of approximately 40-70 kHz depending on the Mach number of the flow. For 

this reason, the OASPL is not suitable for the present study since it is independent of the 

frequency range. In order to evaluate the effect of the cylinder in crossflow configurations 

on the cavity tones from a scientific standpoint, one must exclude the self noise of these 

configurations from the cavity tones. Hence we introduce a metric, SPZ^ofcz/z- which we 

define as: 

SPL 20k Hz 20 log \ 

20 kHz 

£p2 
100 Hz 

Pre} 
(9) 

where prej = 20uPa. As can be seen in figure 6, the difference between SPL20kHz and the 

OASPL for the baseline configuration is marginal (< 0.3 dB), which reinforces the conjecture 

that the majority of the cavity flow acoustics for this configuration are mainly concentrated 

at frequencies below 20 kHz. It is also found that even though changing the Mach number 

changes the frequency of the cavity tones (see figure 4), the SPL2okHz value does not change 

considerably and remains within the narrow band of 156 to 158 dB. 

Figure 7 shows results for the cavity tone suppression as a function of the gap, g/S, 

and the Mach number, M, where, as mentioned earlier, S is the nominal boundary layer 
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thickness. The data presented in figure 7 have been acquired at finer increments of the 

gap g than tabulated in table I. This is done in order to better determine the optimal 

cylinder location from the point of view of acoustic suppression. The y-axis is represented 

as the change in the SPL^okHz metric between the baseline configuration and the control 

configuration under consideration, with positive values of A.SPL20kHz indicating an acoustic 

suppression by the control configuration. Figure 7(a) shows results for the cylinder placed 

at x/d — —1.59 (cylinder location 'A.x' in table I), whereas figure 7(b) corresponds to the 

cylinder placed at x/d = —6.35 (cylinder location 'B.x' in table I) from the cavity leading 

edge (x=l, 2, ..., 6). In both figures 7(a) and 7(b), at all the Mach numbers, the suppression 

characteristics show a similar trend with respect to changing the gap g/5. Starting with the 

cylinder location having the largest g/5, it is seen that reducing the gap between the cylinder 

and the ground, at a given Mach number, increases the efficacy of the control configuration 

in suppressing acoustics of the baseline configuration. This trend continues until it reaches 

a maximum after which any further decrease in the gap reduces the suppression provided 

by the control configuration at that particular Mach number. It is seen that at g/5 — 0.5, 

i.e. when the cylinder is resting on the ground, the acoustic suppression provided by the 

control configuration at a particular Mach number is markedly lower than when there is gap 

between the cylinder and the ground. Figure 7 also indicates that as the Mach number is 

increased, the efficacy of the cylinder in suppressing the cavity tones deteriorates. Finally, 

it can be concluded that for a majority of the cases, moving the cylinder upstream reduces 

the efficacy of the cylinder in suppressing the cavity tones. 

As far as the optimum location of the cylinder is concerned, one of the pertinent ques- 

tions is, which parameter is more sensitive for cavity tone suppression: moving the cylinder 

upstream or raising the cylinder above the ground? A comparison between figure 7(a) and 

(b) shows that raising the cylinder above the ground is more sensitive in suppressing the 

cavity tones. For example consider the M = 0.5 case at g/5 = 1.14. Moving the cylinder 

upstream by approximately 5 equivalent cylinder diameters (5rf) in the X direction reduces 

suppression by approximately 1 dB. However moving the cylinder in the transverse (Y) di- 

rection by ~ bd reduces the suppression by more than 5 dB. As far as the optimum location 

in the Y direction is concerned, Ukeiley et c/.23 suggest that the cylinder should as high 

as possible, yet completely contained within the boundary layer. Stanek et a/.26 claim that 

the optimum gap between the cylinder and the ground should be 2/3rd of the boundary 
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layer thickness, which corresponds to g/5 = 1.16 for the current experiments. In the present 

study we found the optimum gap g/5 to be 1.14. Since, each of these studies pertain to a 

different cylinder diameter, further work needs to be done with different cylinder diameters 

to find more accurate and universal optimum Y location. 

B.     Stability Characteristics of the Synthetic Profile 

As mentioned in §11C, one of the goals of the present study is to investigate the stability 

characteristics of the experimentally measured velocity profiles as the cylinder location is 

varied in the X and Y direction. However, as opposed to the stability characteristics of 

the classical shear layer velocity profile given in equation (6) the stability characteristics 

of the hybrid profile given in equation (7) have not been studied extensively. Rather than 

constructing a hybrid mean velocity profile with arbitrary values of the profile parameters, we 

selected the mean profile corresponding to the control configuration A.5 and using equation 

(7) fitted a curve to this profile in order to arrive at optimal values of the profile parameters 

SL0ff, 5W, Wamp, W0ff, and Wwu. Similarly, equation (6) was used to fit a curve to the 

experimentally measured mean velocity profile of the baseline configuration and arrive at 

optimal values of SL„// and 5W for this configuration. These profiles, obtained by fitting 

theoretical curves to experimental data, are referred to as the principal profiles. Note that 

the choice A.5 case is not motivated from its acoustic suppression characteristics; it is 

chosen because the velocity profile of A.5 case was easy to modify-due to its symmetrical 

and clearly discernible wake. The stability characteristics of these principal profiles were 

obtained by solving the spatial eigenvalue problem given by (3) for various values of the 

frequency co, using the shooting method. This method requires a starting guess for a in 

order to initiate an iterative solver (the Newton-Raphson method) which, in turn, provides 

an optimal value of the eigenvalue a. In the case of the principal profile corresponding to the 

baseline configuration, the eigenvalue for the starting guess was obtained using a vortex-sheet 

model at the given Mach number. Since a vortex-sheet model corresponding to the hybrid 

profile was not available, the eigenvalue for the principal profile corresponding to the A.5 

configuration was obtained using a trial-and-error method. Once the unstable modes of the 

principal profiles were obtained, we then parametrically varied the shape of these principal 

profiles to produce various synthetic profiles. The instability modes of these synthetic profiles 
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were obtained using the solutions of the principal profiles as the initial guess. All the stability 

calculations were performed for a freestream Mach number of M = 0.6. 

1.    Existence of Multiple Instability Modes 

The unbounded free shear flow described by a tanh type curve is known to have only one 

instability mode (Rowley35). However, when simulated experimentally, the mean velocity 

comprises of the wake of the splitter plate wake superimposed on the shear layer, typical of 

the the hybrid profile given in equation (7). Koochesfahani and Frieler36 studied the stability 

of such profiles. They showed the existence of two modes, which they termed as the shear 

layer mode and the wake mode, for such hybrid profiles. The shear layer mode had a larger 

instability growth rate and it's eigenfunction had a single peak that was aligned with the 

midpoint of the shear layer. The wake mode had two peaks placed across the wake part of 

the hybrid profile. The streakline pattern revealed that the shear layer mode was sinuous 

whereas wake mode was varicose in nature. Here, it must be rioted that the wake mode 

described in the Koochesfahani and Frieler36 is different from the wake mode described in 

the work of Gharib and Roshko39, Rowley, Colonius and Basu41 and Forestier, Jacquin and 

Geffroy40. 

Although the velocity profiles in the present study have the same hybrid form, they differ 

in their boundary condition, i.e., the velocity profiles in the studies of Koochesfahani and 

Frieler are unbounded, whereas in the present case they are bounded on one side by the cavity 

floor. Here, the discussion regarding the existence of multiple unstable modes is relevant 

because the shooting method provides only one solution at a time. In the current work, this 

issue is addressed with the help of principal profile A.5 and its synthetic variants. Changing 

the initial guess by a trial-and-error method, we were able to find two unstable modes for the 

principal profile corresponding to this configuration. Figure 8(a) shows the experimentally 

measured mean velocities (shown using open symbols) for configuration A.5 along with the 

best fitting curve for this configuration (indicated by the solid curve) obtained using equation 

(7). The empirical parameters that describe the shear layer and wake parts of the hybrid 

mean velocity profile are also shown in this figure. Two sample eigenfunctions corresponding 

to the two unstable modes obtained for this principal profile are shown in figures 8(b) and 

(c).   These eigenfunctions have been normalized by the maximum amplitude of the pressure 
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eigenfunction in the domain. As seen from the figures, out of the two unstable modes, one 

mode has a double lobed peak aligned with the wake part of the profile. We refer to this 

unstable mode as eigenmode T (8(b)). The other unstable mode, has its peak aligned with 

the shear layer part of the profile. This unstable mode will be referred to as eigenmode 'IF 

(8(c)). 

2.    Phase Velocities and Growth Rates of Synthetic Profiles 

We begin by studying the effect of changing the wake amplitude parameter, Wamp. in 

equation (7). Figure 9(a) shows a few sample synthetic variants(obtained by varying pa- 

rameter Wamp) of the principal profile corresponding to the control configuration A.5. These 

synthetic variants can be experimentally obtained as one moves downstream along a wake; 

the further downstream one goes, the lower the value of Wamp obtained (although, in prac- 

tice, the reduction in wake amplitude as one moves further downstream along a wake is 

accompanied by a larger wake width in accordance with the law of conservation of momen- 

tum; additionally, for our configurations, the presence of a ground adjacent to the wake on 

one side adds to the complexity of the flowfield). As far as the growth rates of the two 

unstable modes is concerned, it is observed that as the velocity deficit in the wake reduces, 

i.e. as Wamp decreases, the instability growth rate of eigenmode I keeps decreasing as shown 

in figure 9(b). This behavior is expected since it can be seen from equations (7) and (6) 

that when Warnp = 0, the hybrid velocity profile reverts back to being a classical shear layer 

profile. Since the classical shear layer profile has only one unstable mode it makes sense 

that eigenmode I would cease to exist when the wake is eliminated. As far as the phase 

velocities for this mode are concerned, it is seen from figure 9(b) that the phase velocities 

increase marginally as the wake amplitude is reduced, although for a given value of Wamp, 

the phase velocities remain approximately constant over almost the entire frequency range. 

In contrast to the behavior for eigenmode I it is seen that the growth rates for eigenmode II 

remain fairly unchanged as Wamp is varied, as shown in figure 9(c). This is to be expected 

since eigenmode II is dependent on the shear layer characteristics rather than the wake 

characteristics. The phase velocities for this eigenmode initially increase with an increase 

in the instability frequency before reducing and remaining constant at approximately half 

the freest ream velocities (Uc = ().ot\ ) for the higher instability frequencies.  Comparison 
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between figures 9(b) and (c) also show that growth rates of eigenmode II are substantially 

higher than that of the eigenmode I. 

Next, we create synthetic profiles by changing the values of the wake width parameter, 

WWid, in equation (7). Some sample profiles illustrating this behavior are shown in figure 

10(a). Such mean profiles could be experimentally generated by using cylinders of different 

diameters. The instability growth rates for modes I and II for these profiles are shown 

in figures 10(b) and (c) respectively. It can be seen from figure 10(b) that as the wake 

becomes wider, i.e. as Wwi({ increases, the frequency range and the maximum amplitude of 

the instability growth rate for mode I reduces. On the other hand, the instability growth 

rates for mode II remain unchanged. This figure shows that as Wwi(i becomes narrower, 

for all other parameters remaining the same, the growth rate of mode I becomes greater 

than that of mode II. For mode I, as seen from figure 10(b), the phase velocities at a given 

value of WWid increase as the frequency increases. Additionally, as Wwid increases, the phase 

velocity at a given frequency is greater for a configuration with a wider wake. In the case of 

mode II, for various values of Wwid, the phase velocities are identical at higher frequencies. 

At lower frequencies, the phase velocity deceases as WWid decreases. 

Changing the wake offset parameter, W0// physically moves the wake towards or away 

from the shear layer. Synthetic profiles indicating this behavior are shown in figure 11(a). 

Mean profiles of this kind can be experimentally generated by changing the gap, g, between 

the cylinder and the cavity. The instability growth rates for modes I and II for the profiles 

shown in figure 11(a) are shown in figures 11(b) and (c) respectively. It is seen that the 

growth rate of the instability mode I is unchanged as long as the value of W0JJ is such that 

the wake and the shear layer remain separate. However, once this condition is no longer 

valid, it can be seen that the more velocity deficit of the wake lies within the shear layer, 

the smaller the maximum amplitude of the growth rate of, and the smaller the range of, 

the instability frequencies corresponding to instability mode I. Similar results are seen in 

the case of instability mode II (figure 11(c)) wherein the growth rates for this mode remain 

unchanged as long as the wake and the shear layer remain separate. It is seen that as 

the values of W0ff are systematically reduced, it becomes difficult to obtain two distinct 

instability modes; refer to the curve corresponding to W0jf = 0.10 where stability results 

are only obtained for mode II. Thus, merging the wake and the shear layer leads to a merging 

of the growth rate characteristics of modes I and II. The phase velocities for both modes 
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are observed to be close to half the freestream velocity at higher frequencies.   At lower 

frequencies, it is seen that the phase velocities of mode II are higher than those of mode I. 

The effect of changing the vorticity thickness of a classical tanh-type shear layer profile 

given by equation (6) is well known.  These results, which may be found in the references 

cited in the beginning of §IV, can be summarized as follows: 

1. Starting with the vortex-sheet model (5W = 0) which is unstable at all frequencies, 

increasing the vorticity thickness causes the shear layer to be unstable to a finite range 

of frequencies. This frequency range reduces as the vorticity thickness is increased. 

2. As the Mach number increases, the maximum growth rate keeps reducing until at 

a high enough Mach number the shear layer is no longer spatially unstable at any 

frequency. 

Figure 12 shows the effect of changing the vorticity thickness (Sw) of the classical tanh-type 

shear layer profile, on the growth rates of the first two Rossiter modes at St = 0.19 and 

St = 0.4. It is seen that, for both first and second Rossiter modes, increasing Sw first 

increases the growth rates, until they achieve a maximum value, following which any further 

increase in 6W leads to a reduction in the growth rate of these two Rossiter modes. Here 

compared to the first mode, the second Rossiter mode shows fast variation, especially with 

respect to the drop in the growth rate at higher values of 8W. For small Sw values, the growth 

rate of second Rossiter mode is higher than first; this trend reverses for Su. > 0.24. 

For the hybrid profile, figure 13(a) shows mean profiles obtained by changing the vorticity 

thickness parameter, 6W, in equation (7). Figures 13(b) and (c) show the instability growth 

rates of modes I and II respectively. Here it is seen that the growth rates of the instability 

mode I remain largely unchanged as the vorticity thickness is changed (figure 13(b)). On 

the other hand, as shown in figure 13(c), the growth rates of instability mode II changes in a 

manner that is consistent to the changes that occur in classical shear layer type profiles. For 

mode I, as shown in figure 13(b), the phase velocities are identical for the entire frequency 

range for all values of Sw. As far as mode II is concerned, for a given value of 8W, the phase 

velocities at the higher frequencies are remain fairly constant. At the lower frequencies, the 

phase velocities are higher for lower values of the vorticity thickness. Both, modes I and II, 

have nearly identical phase velocities (half the freestream velocity) at the higher frequencies. 
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The stability characteristics of synthetic profiles obtained by changing the value of the 

SL0ff parameter are similar to the ones obtained by changing the W0ff parameter. This is 

because a change in either of these parameters leads to a change in the physical location of the 

wake with respect to the shear layer. Hence, in the interest of brevity, the characteristics of 

the profiles obtained by changing SL0JJ have not been separately discussed. Similarly, if both 

SL0ff and W0// are simultaneously changed such that the resultant mean velocity profile 

is a linear translation of the original profile, the stability characteristics of this resultant 

profile, for, both, modes I and II, are identical to the original profile. 

The stability calculations indicate that as long as the velocity defect due to the wake 

is physically located such that it does not interact with the shear layer, instability modes 

I and II are distinct and the growth rates and phase velocities of both these modes can 

be obtained. As the wake starts merging into the shear layer, the growth rates of both 

instability modes I and II become comparable. Hybrid mean velocity profiles where the 

wake and shear layer parts of the profiles are merged to some extent can be experimentally 

obtained for cylinder locations having smaller gaps; this will be shown in greater detail in 

the §VC. For configurations where the velocity deficit due to the wake is merged with the 

shear layer to a much larger extent, it becomes difficult to distinguish two separate modes I 

and II as was shown in figure 11. It was found that as long as the wake and shear layer parts 

of a given hybrid profile were physically separate, mode I was sensitive to the changes in the 

wake, but insensitive to the changes in the mixing layer; conversely, mode II was sensitive 

to the changes in the shear layer, but insensitive to the changes in the wake. 

C.     Study of Experimentally Measured Velocity Profiles 

1.    Mean Velocity Measurements 

We now turn our attention to the results obtained by mean velocity measurement exper- 

iments for the baseline and control configurations. Figure 14 shows mean velocity profiles 

measured at the spanwise center of the cavity (z — 0) at a streamwise location, x = 0.08, 

for the baseline and control configurations. The streamwise location is sufficiently close to 

the upstream edge of the cavity that the profiles measured at this location, when used for 

spatial linear stability calculations, would provide reliable measures of growth rates of the 
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instabilities affecting the cavity flow physics. The mean velocities measured for the control 

configurations listed in table I, as well as for the baseline configuration, are shown by open 

faced symbols in figures 14(a) and (b). The solid lines in these figures are the curve fits to 

the measured velocity profiles obtained by using equations (6) or (7), as applicable. Starting 

with the profile shown at the bottom, which corresponds to the baseline configuration, each 

successive profile is shifted by one unit on the Y-axis in order to facilitate ease of viewing. 

When the cylinder is located on the ground upstream of the cavity (configurations A.l 

and B.l), the mean velocity measurements are once again well predicted using a hyperbolic 

tangent type equation given by (6), similar to that for the baseline configuration. The 

principal difference between the mean velocity profile curve fits for configurations A.l and 

B.l versus the baseline configuration is that the shear layer offset parameter, SL0ff. is 

much larger in the case of the former configurations as compared to the latter configuration. 

This indicates that placing the cylinder on the ground not only inhibits the formation of a 

wake, but also results in a transverse deflection of the shear layer above the cavity, which 

nevertheless develops in accordance with the classical hyperbolic tangent type equation 

given by (6). As we move progressively upwards, along the Y-axis of figures 14(a) and (b), 

from the profile for configuration A.2 (or B.2), the location of the wake is seen to translate 

in the transverse direction. This is an indication of the progressively larger gap between 

the cylinder and the ground for each subsequent configuration. For smaller gaps between 

the cylinder and the ground (configurations A.3, A.4, B.3 and B.4), the wake is seen to 

be asymmetric. This is due to the fact that for these configurations some portion of the 

the cylinder is located within, or very close to, the boundary layer upstream of the cavity 

leading to unequal velocities above and below the cylinder. This asymmetry is not seen for 

configurations having larger gaps (A.5, A.6, B.5 and B.6). Finally, it is seen that the mean 

velocity profiles corresponding to cylinder locations further away from the upstream edge 

of the cavity (figure 14(b)) have more diffused wakes than those corresponding to cylinder 

locations closer to the upstream edge of the cavity (figure 14(b)). When expressed in terms of 

the parameters given in equation (7), this means that the magnitude of the parameter Wamp 

is greater for the 'A.x' configurations than those for the corresponding "B.x' configurations. 

Figure 15 shows the mean velocity profiles at various streamwise locations for the baseline 

and control configurations. These measurements were taken along the spanwise center of 

the cavity (z = 0). As one moves downstream, the shear layer becomes thicker and the wake 
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starts diffusing. As expected, the baseline and A.l configurations do not show the presence 

of a wake at any of the streamwise locations. For configuration A.2 it is seen that the wake 

completely merges with the shear layer within a short distance from the leading edge of the 

cavity; in contrast, for configurations A.4 and A.6, the signature of the wake is observed for 

a larger streamwise distance. The uncertainty analysis of one of the velocity profiles, i.e. 

Baseline velocity profile measured at x = 0.72, showed that the the data that lay outside of 

the cavity is highly consistent, i.e., the errors are less than 2%. The repeatability of the data 

reduces as one moves inside of the cavity, although the error never exceeds 10%. inNote that 

for the case A.6, when the wake is out of the influence of the shear layer, the development 

of the wake in terms of its decay rate etc., closely follow the classical turbulence theory43. 

This suggests that at a sufficient distance away from the shear layer the wake develops as a 

separate entity. In conjunction with the results presented in figure 12, one can argue that 

merging of the of the wake with the mixing layer can make the shear layer thick enough 

so that at some point even the Rossiter modes cannot be amplified. In that case it is not 

the growth rate at one location but the integrated growth rate that would determine the 

amplification of a disturbance at the upstream edge of the cavity. These integrated growth 

rates are calculated in the following section. 

2.    Stability Results for the Measured Profiles 

We now present results from our investigation of the stability characteristics of the exper- 

imentally measured mean velocity profiles shown in figures 14. Figure 16(a) and (b) show 

the growth rates for instability modes I and II respectively for cylinder locations close to the 

upstream edge of the cavity (locations 'A.x' in table I). Note that for configurations A.l 

and A.2, the wake is either nonexistent or is merged with the shear layer to such an extent 

that only instability mode II exists. For mode I, figure 16(a) indicates that configurations 

with large enough gap, such that the only effect of changing the cylinder location is to shift 

the location of the velocity deficit of the wake in the Y direction (configurations A.5 and 

A.6), have similar growth rates. For these configurations, the amplitudes of the velocity 

deficit region of the wake were similar, as was shown in figure 14(a). On the other hand, the 

growth rates of mode I for configurations A.3 and A.4, where the velocity deficit produces 

wakes having smaller amplitudes, are much smaller than for configurations A.5 and A.6. 
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For mode II, figure 16(b) shows that as the gap between the cylinder and the ground is 

increased, the growth rates for the configurations A.5 and A.6 become increasingly similar 

to that of the baseline configuration. This is to be expected since a larger gap will allow 

for the flow underneath the cylinder to develop similar to the baseline as though the flow 

did not sense the presence of the cylinder. For configurations A.3 and A.4 the interaction of 

the cylinder with the boundary layer upstream of the cavity results in a pseudo-thickening 

of the shear layer; the growth rates of mode II for these configurations are indicative of the 

result of this thickening of the shear layer. For configuration A.2 the gap is even smaller and 

the wake is barely discernible downstream of the cylinder; this results in the formation of 

the thickest shear layer (amongst all the 'A.x' configurations) at the measurement location 

and, consequently the lowest maximum growth rate. For configuration A.2, the lofting of 

the shear layer results in the formation of a slightly thinner shear layer (as compared to the 

baseline configuration) at the measurement location. This is reflected in the growth rate 

characteristics for this configuration (range of instability frequencies and maximum growth 

rate being slightly larger than the baseline configuration). 

For cylinder locations upstream of the leading edge of the cavity (locations 'B. x' in table 

I), the growth rates of instability modes I and II for the experimentally measured profiles 

are shown in figure 17(a) and (b) respectively. Once again, only instability mode II is shown 

for configurations B.l and B.2. As explained in reference to figure 14(b), the location 

of the cylinder allows for a greater development of the wake; this is indicated by mean 

velocity profile measurements which show a more diffuse wake that has a smaller amplitude 

and larger width. As indicated in §VB, a reduction in the the wake amplitude results in 

the reduction in the maximum growth rate for mode I. This can be seen by comparing the 

growth rates for configurations B.5 and B.6 (in figure 17(a) to those for configurations A.5 

and A.6 (in figure 16(a)); as expected, the growth rates for the former are much smaller 

than those for the latter. As the cylinder is brought closer to the ground, the wake region 

begins merging with the shear layer region leading to the production of wakes having smaller 

amplitudes, as seen for configurations B.3 and B.4. Hence, for these configurations, in figure 

17(a), trends that are consistent with configurations A.3 and A.4 (where a similar merging 

of the two regions occurred), are observed; the configurations closer to the ground (B.3 and 

A.3) have smaller maximum growth rates and range of instability frequencies compared to 

the configurations further away (B.4 and A.4). For instability mode II, figure 17(b) shows 
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that when the cylinder is placed on the ground, it acts as a boundary layer trip, thickening 

the boundary layer compared to the baseline configuration, and leading to a correspondingly 

thicker shear layer downstream of the leading edge of the cavity. For this reason, the growth 

rate for configuration B.l has a much smaller growth rate and instability frequency range 

compared to the baseline. As the cylinder is moved in the transverse flow direction, the 

flow underneath it tends towards that of the baseline which in indicated by the growth rate 

of mode II getting closer to the baseline for configurations B.5 and B.6. For configurations 

B.3 and B.4, the merging of the wake and shear layer regions leads to a perceived increase 

the vorticity thickness of the shear layer. This results in the growth rates of mode II for 

these configurations being smaller than that of the baseline as well as the B.5 and B.6 

configuration, although not as small as the B.l configuration. For configuration B.2, where 

the wake and shear layer regions are merged to a large extent, the maximum growth rate 

amplitude is similar to the baseline; however this configuration also has the smallest range 

of instability frequencies. 

To get an insight into the trends of instability mode II, we focus on the relation between 

the vorticity thickness, Sw, of the mixing layer part of the profile and maximum growth 

rate for a given value of 6W. This relation is shown in figure 18 for the synthetic profiles 

and for the experimentally measured profiles. This figure also shows the variation of the 

maximum growth rate of synthetic variants of the baseline profiles as a function of Sw. It is 

seen that the maximum growth rate is inversely proportional to the vorticity thickness. One 

can also see that growth rate is especially sensitive at smaller values of 8W\ for large values 

of parameter Sw, there is very little variation in the maximum growth rate. The data for the 

experimentally measured profiles is in agreement with the trend for the synthetic profiles. 

Thus, comparing stability envelopes of mode II in figures 16(b) and 17(b), and the trend for 

the maximum growth rate in figure 18, it can be concluded that the vorticity thickness of the 

shear layer part of the hybrid profile dictates the stability of mode II of the experimentally 

measured profiles, independent of the presence of the wake. A similar conclusion cannot be 

drawn with respect to mode I since the stability of this mode is affected by changes to both, 

the wake amplitude as well as the wake width. 

Now we turn our attention to the integrated growth rates for the experimental velocity 

profiles. The amplitude of a given instability mode is calculated by integrating the complex 

growth rate a, over the streamwise locations. For the pressure eigenfunctions calculated in 
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the current study, this is given as: 

p{x,y) = p{y)exp(i       adxj. (10) 

where in accordance with our parallel flow assumption, a is supposed to be constant. How- 

ever, as seen from the streamwise velocity profile measurements in figure 15, the experimental 

flowfield is slowly diverging. This means that both, a as well as the eigenfunction p are ac- 

tually slowly varying functions of the streamwise position x. Figure 19 shows the integrated 

growth rates for the configurations shown in figure 15. i.e., baseline, A.l, A.2, A.4 and A.6 

profiles. These growth rates are based on numerical integration of the expression in equa- 

tion (10) along the streamwise direction. For cases A.4 and A.6, results for both mode I 

and mode II are shown. For rest of the cases, due to the absence of discernible wake, only 

stability mode II could be obtained. Figure 19(a) shows the growth of the first Rossiter 

mode, whereas figure 19(b) shows growth of the second Rossiter mode. For both Rossiter 

modes, the growth rate of the mode II is higher than that of mode I. Downstream of the 

x = 0.25, the difference between the stability mode I and II is almost 100%, which is not 

surprising knowing the results of the stability mode I and II in relation to the study of the 

synthetic profiles. For all the configurations except A.4, the growth rate of the first Rossiter 

mode is the same throughout the cavity length. For control case A.4 the growth rates are 

higher, especially at downstream locations of the cavity. For the second Rossiter tone, there 

seems to be no particular trend. For the baseline case downstream of x = 0.32, the second 

Rossiter mode is not amplified. Control cases A.l, A.2 and A.4 show consistently higher 

growth when compared to baseline cases, whereas A.6 shows the least growth. 

D.    Relevance to Cavity Resonance Suppression 

As mentioned in the §11B, it has been suggested that the acoustic suppression benefits 

provided by a cylinder in crossflow configuration are a result of enhanced stability character- 

istics of its modified mean velocity profile. To this end, the primary objective of this paper 

was to develop the spatial linear stability theory based on this modified mean velocity profile 

and understand its role in the cavity resonance suppression benefits. In the present study 

the frequency of the most amplified Rossiter tone, from our experimental data, is found 

to be 3.1 kHz at M = 0.6.  This is equivalent to a Strouhal number (based on the cavity 
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depth D), Sto = 0.20. Compared to this, the maximum frequency that can be amplified 

in the baseline flow is typically 5 to 6 times the Rossiter frequency (refer to the stability 

curve for the baseline configuration in figure 16(b)). For all the cylinder locations tested, 

the baseline cavity Rossiter mode frequency always lies within the range of unstable fre- 

quencies. As far as the acoustic suppression characteristics are concerned, it is seen that the 

A.2 configuration shows the maximum suppression in the sound pressure levels, compared 

to the baseline, at all the Mach numbers. For this configuration, as shown in figure 16, only 

the mode II instability could be detected. The maximum growth rate for this mode was 

calculated to be much lower than the maximum growth rate of the baseline configuration. 

This would indicate that if enhanced stability is the driving force behind cavity resonance 

suppression achieved using the cylinder in crossflow configuration, it is manifested in the 

form of a reduced amplitude of the maximum growth rate. However, it can also be argued 

that since the most amplified frequency in the baseline configuration is the Rossiter mode 

at Stp = 0.20, then for the stability hypothesis to have some bearing on the cavity tone 

suppression, one would expect to see a change in the growth rate atthis particular cavity 

resonance frequency. At this point we would like introduce the notion of the cavity as a 

control system. According to Rowley et al.u resonating cavity does not necessarily always 

have to be an unstable system, wherein the shear layer growth rate is saturated due to the 

non-linear limit cycle processes. They showed that under certain conditions the cavity can 

behave as a weakly damped linear system, wherein the integrated growth of the shear layer 

is propositional to its initial perturbation. For the forgoing linear stability analysis of the 

shear layer to be valid it is imperative that when controlled the cavity shear layer does not 

saturate. This would imply that cases with large suppression would exhibit smaller inte- 

grated growth, and cases with small suppression would exhibit comparatively higher growth 

at the Rossiter tone frequency Contrary to our expectation one sees very little or no correla- 

tion between the growth rates and the suppression data. This is because, as shown in figure 

16(b), in the Strouhal number range up to Sto ~ 0.5 the growth rates for all the control 

configurations differ only marginally from those of the baseline configuration. Calculations 

of the integrated growth rates reveal that the baseline configuration and the configuration 

showing the best suppression characteristics (A.2) have comparable instability magnitudes 

for instability mode I. This is true for both, the first as well as second Rossiter modes. 

In present problem, apart form the shear layer stabilization, effects such as high frequency 
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forcing and shear layer lift off are also present. The work of Sarpotdar and Raman45 and 

Bastrzyk and Raman46) investigated the issue of shear layer lift off in a great detail. They 

fitted equation 7 to a number of experimentally measured velocity profiles for different 

control cases to characterize the shear layer lift off in terms of the parameter SL0JJ. They 

found that the cases with higher acoustic suppression tended to have higher values SL0jf. 

Their work also showed that increased shear layer lift off was associated with the reduced 

impingement of the shear layer onto the trailing edge of the cavity. Since the impingement 

of the shear layer can generate turbulence length scales across the whole spectrum, the lift 

off effect, and consequently the reduced impingement of the shear layer, could explain the 

ability of the rod to reduce the broad band noise levels (see Fig.5). However, their results 

could not explain all the suppression trends reported in the present work, e.g., they were 

unable to comment on the optimum gap between the cylinder and the ground. This suggests 

that multiple mechanisms might be play concurrently in suppressing the cavity tones. 

VI.    CONCLUSIONS 

As an actuator that provides cavity resonance suppression, the cylinder in crossflow tech- 

nique holds promise. However, it is necessary to understand the physics governing this 

resonance suppression mechanism in order to optimize actuator design for achieving max- 

imum suppression performance. In the current paper, a detailed parametric study was 

undertaken, with regards to actuator location, in order to better understand its suppres- 

sion characteristics. A thorough examination of our acoustic data revealed the following 

interesting points: 

Starting from a gap, g = 4.5d (cylinder located in the freestream), reducing the gap 

is found to enhance its suppression performance until an optimum gap is reached. Any 

further reduction in the gap past this optimum leads to a deterioration in the suppression 

performance. In the present study the optimum gap is found to be g/5 = 1.14 or g/d — 1.15. 

For the current study, it is found that the suppression characteristics of the cylinder in 

crossflow configuration deteriorate as the freestream Mach number is increased. Finally, 

moving the cylinder upstream also reduces the efficacy of the cylinder in suppressing the 

cavity tones. 

In order to understand the mechanism of resonance suppression by the cylinder in cross- 
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flow configuration, we studied the linear stability characteristics of the modified mean ve- 

locity profile of this configuration. To this end, we developed the spatial, linear stability 

theory for nearly parallel, inviscid, compressible shear flows incorporating the modified mean 

velocity profile relevant to this analysis. The equation for this modified mean velocity pro- 

file, referred to as the hybrid profile since it is a combination of the classical shear layer 

profile and a wake profile, contains five parameters that were individually varied in order to 

understand the effect of each parameter on the stability characteristics. Following this, we 

examined the instability growth rates of experimentally measured mean velocity profiles in 

an attempt to correlate them to our acoustic suppression results. The following interesting 

results emerged from the stability analysis: 

The hybrid profile has at least two unstable modes; these two modes are referred to as 

mode I and mode II (which correspond to the wake mode and shear layer mode respectively 

in the Koochesfahani and Frieler36 study). Reducing the wake amplitude (i.e. the velocity 

deficit associated with the wake) reduces the maximum growth rates of instability mode I. 

As the wake disappears from the velocity profile, instability mode I ceases to exist, leaving 

only mode II. This is consistent with established results which have shown that the classical 

shear layer type flow has a single unstable mode. 

The characteristics of instability mode II are consistent with established characteristics of 

classical shear layer type flows whose mean profiles are governed by the tanh-type relation. 

Unless the shear layer region and the velocity deficit region of the wake are merged beyond 

a certain extent, the stability characteristics of mode I are only affected by changes to the 

wake part of the velocity profile; by extension, the stability characteristics of mode II are 

only affected by changes to the shear layer part of the velocity profile. 

For configurations having mean velocity profiles with unmerged shear layer and wake 

regions, the growth rate of mode II is greater than that of mode I. When the shear layer and 

wake regions start merging, the growth rates of both modes become comparable. When these 

two regions have merged to a large enough extent, mode I can no longer be independently 

detected. For the baseline configuration, the Rossiter tone always lies within the range of 

unstable frequencies. At the lower range of instability frequencies, the growth rates of all 

the control configurations are nearly identical to that of the baseline. Despite the near- 

constant growth rates, the suppression results vary greatly as the location of the cylinder is 

changed. This suggests that the link between the cavity tone suppression and the influence 
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of the cylinder on the shear layer stability is weak. However, other mechanisms for cavity 

resonance suppression using the cylinder in crossflow configuration, such as high frequency 

forcing and shear layer lift-off will need to be examined more closely before a conclusive 

statement can be made. 

1 H. H. Heller and W. M. Dobrzynski, "Sound radiation "from" aircraft wheel-well/landing-gear 

configurations", Journal of Aircraft 14, 768 (1977). 

2 O. W. McGregor and R. A. White, "Drag of rectangular cavities in supersonic and transonic flow 

including the effects of cavity resonance", American Institute of Aeronautics and Astronautics 

Journal 18, 1959 (1970). 

3 D. Sahoo, A. M. Annaswamy, and F. Alvi, "Active store trajectory control in supersonic cavities 

using microjets and low-order modeling", American Institute of Aeronautics and Astronautics 

Journal 45, 516 (2007). 

4 R. A. King, T. R. C. Jr., and D. M. Bushnell, "Experimental transition investigation of a 

free-shear layer above a cavity at mach 3.5", Journal of Propulsion and Power 7, 626 (1991). 

5 H. N. Najm and A. F. Ghoneim, "Numerical simulation of the convective instability in a dump 

combustor", American Institute of Aeronautics and Astronautics Journal 29. 911 (1991). 

6 P. C. Kriesels, M. C. A. M. Peters, A. Hirschberg, A. P. J. Wijnands, A. Iafrati, G. Riccardi, 

R. Piva, and J. C. Bruggeman, "High amplitude vortex-induced pulsations in a gas transport 

system", Journal of Sound and Vibration 184, 343 (1995). 

7 W. W. Martin, M. Padmanabhan, and E. Naudascher, "Fluid-dynamic excitation involving flow 

instability", Journal of the Hydraulics Division 101, 681 (1975). 

8 D. Rockwell and E. Naudascher, "Review - self-sustaining oscillations of flow past cavities", 

Transactions of the ASME: Journal of Fluids Engineering 100, 152 (1978). 

9 N. Chokani, "Flow induced oscillations in cavities - a critical survey", DGLR/AIAA 92-01-159 

(1992). 

10 L. N. Cattafesta, D. R. Williams, C. W. Rowley, and F. Alvi, "Review of active control of 

flow-induced cavity resonance", American Institute of Aeronautics and Astronautics Paper 

2003-3567 (2003). 

11 C. W. Rowley and D. R. Williams, "Dynamics and control of high-Reynolds-number flow over 

29 



open cavities", Annual Review of Fluid Mechanics 38, 251 (2006). 

12 C. K. W. Tam and K. K. Ahuja, "Theoretical model of discrete tone generation by impinging 

jets", Journal Fluid Mechanics 214, 67 (1990). 

13 G. Raman, "Supersonic jet screech: half-century from powell to the present", Journal of Sound 

and Vibration 225, 543 (1999). 

14 D. G. Crighton, "The jet edge-tone feedback cycle - linear theory for the operating stages", 

Journal of Fluid Mechanics 234, 361 (1992). 

15 M. S. Howe, "Edge, cavity and aperture tones at very low mach numbers", Journal of Fluid 

Mechanics 330, 61 (1997). 

16 L. F. East, "Aerodynamically induced resonance in rectangular cavities", Journal of Sound and 

Vibration 3, 277 (1966). 

17 A. Powell, "On the edgetone", The Journal of the Acoustical Society of America 33, 395 (1961). 

18 J. E. Rossiter, "Wind tunnel experiments on the flow over rectangular cavities at subsonic and 

transonic speeds", Technical report, Aeronautical Research Council Reports and Memoranda, 

No. 3438, London, England, 1966. 

19 A. J. Bilanin and E. E. Covert, "Estimation of possible excitation frequencies for shallow rect- 

angular cavities", American Institute of Aeronautics and Astronautics Journal 11, 347 (1973). 

20 C. K. W. Tam and P. J. W. Block, "On the tones and pressure oscillations induced by flow over 

rectangular cavities", Journal of Fluid Mechanics 89, 373 (1978). 

21 S. Raghu and G. Raman, "Cavity resonance suppression using miniature huidic oscillators", 

American Institute of Aeronautics and Astronautics Journal 42, 2608 (2004). 

22 S. F. McGrath and L. L. Shaw, "Active control of shallow cavity acoustic resonance", American 

Institute of Aeronautics and Astronautics Paper 1996-1949 (1996). 

23 L. S. Ukeiley, M. K. Ponton, J. M. Seiner, and B. Jansen, "Suppression of pressure loads in 

cavity flows", American Institute of Aeronautics and Astronautics Journal 42, 70 (2004). 

24 M. Stanek, G. Raman, V. Kibens, J. Ross, J. Odedra, and J. W. Peto, "Suppression of cav- 

ity resonance using high frequency forcing - the characteristic signature of effective devices", 

American Institute of Aeronautics and Astronautics Paper 2001-2128 (2001). 

25 M. Stanek, G. Raman, J. A. Ross, J. Odedra, J. W. Peto, F. Alvi, and V. Kibens, "High 

frequency acoustic suppression - the role of mass flow, the notion of superposition, and the 

role of inviscid instability - a new model (part II)",   American Institute of Aeronautics and 

30 



Astronautics Paper 2002-2404 (2002). 

26 M. Stanek, J. A. Ross, J. Odedra, and J. Peto, "High frequency acoustic suppression-the 

mystery of the rod-in-crossflow revealed'-, American Institute of Aeronautics and Astronautics 

Paper 2003-0007 (2003). 

27 S. Arunajatesan, J. D. Shipman, and N. Sinha, :"Hybrid RANS-LES simulation of cavity How 

fields with control", American Institute of Aeronautics and Astronautics Paper 2002-1130 

(2002). 

28 J. M. Wiltse and A. Glezer, "Direct excitation of small-scale motions in free shear flows", 

Physics of Fluids 10, 2026 (1998). 

29 A. B. Cain, M. M. Rogers, V. Kibens, and G. Raman, "Simulations of high-frequency excitation 

of a plane wake", American Institute of Aeronautics and Astronautics Paper 2001-0514 (2001). 

30 A. B. Cain, M. M. Rogers, and V. Kibens, "Characterization of high-frequency excitation of 

a wake by simulation", American Institute of Aeronautics and Astronautics Paper 2003-0179 

(2003). 

31 M. Stanek, N. Sinha, J. Seiner, B. Pearce, and M. I. Jones, "High frequency flow control- 

suppression of aero-optics in tactical direct energy beam propagation and the birth of a new 

model (part-I)", American Institute of Aeronautics and Astronautics Paper 2002-0272 (2002). 

32 L. Lees and E. Reshotko, "Stability of the compressible laminar boundary layer", Journal of 

Fluid Mechanics 12, 555 (1962). 

33 A. Michalke, "On the inviscid instability of the hyperbolic tangent velocity profile", Journal of 

Fluid Mechanics 19, 543 (1964). 

34 A. Michalke, "On spatially growing disturbances in an inviscid shear layer", Journal of Fluid 

Mechanics 23, 521 (1965). 

35 C. W. Rowley, "Modeling, Simulation, and Control of Cavity Flow Oscillations", PhD thesis, 

California Institute of Technology, Pasadena, 2002. 

36 M. M. Koochesfahani and C. E. Frieler, "Instability of nonuniform density free shear layers with 

a wake profile", American Institute of Aeronautics and Astronautics Journal 27, 1735 (1989). 

37 P. Panickar, "Mode switching and linear stability analysis of resonant acoustic flows", PhD 

thesis, Illinois Institute of Technology, 2008. 

38 A. Michalke, "Survey on jet instability theory", Progress in Aerospace Sciences 21, 159 (1984). 

39 M. Gharib and A. Roshko, "The effect of flow oscillations on cavity drag",   Journal of Fluid 

31 



Mechanics 177, 501 (1987). 

40 N. Forestier, L. Jacquin, and P. Geffroy, "The mixing layer over a deep cavity at high-subsonic 

speed", Journal of Fluid Mechanics 475, 101 (2003). 

41 C. W. Rowley, T. Colonius, and A. J. Basu, "On self-sustained oscillations in two-dimensional 

compressible flow over rectangular cavities", Journal of Fluid Mechanics 415, 315 (2002). 

42 G. Raman, E. Envia, and T. J. Bencic, "Jet-cavity interaction tones", American Institute of 

Aeronautics and Astronautics Journal 40, 1503 (2002). 

43 J.O. Hinze, "Turbulence" , McGraw-Hill Book Co. (1959). 

44 C, W., Rowley, D., R., Williams , T., Colonius, R., M., Murray, and D. G. Macmynowski, 

"Linear Models for Control of Cavity Flow Oscillations", Journal of Fluid Mechanics 547, 317 

(2006). 

45 S. Sarpotdar, and G. Raman, "Influence of shedding cylinder on cavity flow dynamics", Amer- 

ican Institute of Aeronautics and Astronautics Paper 2009-3350(2009). 

46 M. Bastrzyk, and G. Raman, "Cavity noise suppression through shear layer liftoff". American 

Institute of Aeronautics and Astronautics Paper 2009-3209(2009). 

:{2 



List of Tables 

I       Streamwise and transverse locations of the cylinder for various configurations 

investigated in the current work      38 

33 



List of Figures 

1 Schematic of the cavity resonance generation mechanism      40 

2 Schematic of cavity resonance experiments along with coordinate axes loca- 

tion and orientation (all dimensions are in mm)      41 

3 Sample hybrid velocity profile showing the influence of various empirical para- 

metric constants as indicated in equation (7)      42 

4 Comparison between experimentally observed Strouhal number of the domi- 

nant instability in the current experiments and Rossiter's phase locking for- 

mula given in equation (1)      43 

5 Comparison between spectra for the baseline and two representative control 

configurations, M = 0.6. For suppression cases A.2 and A.4, cylinder is 

located at x/d = —1.59, g/d = 1.43 and x/d = — 6.35, g/d = 1.43 respectively.    44 

6 Acoustic characteristics of the baseline configuration      45 

7 Suppression characteristics of the various control configurations, (a). Stream- 

wise locations 'A' (refer Table I) of cylinder at x/d = —1.59, (b). Streamwise 

locations !B' (refer Table I) of cylinder at x/d = —6.35      46 

8 Mean velocity distribution and pressure eigenfunctions of the instability 

modes of the A.5 configuration (principal profile), (a), (o) experimentally 

measured mean velocity, (— —) best-fitting curve according to equation (7), 

and values of profile parameters for this principal profile, (b), (c). Sample 

eigenfunctions at w = 5.59 (St = 0.89), M = 0.6. (b). Instability mode 

I, a = -12.68 - 2.17?:, (c). Instability mode II, a = -11.04 - 5.27i. The 

pressure eigenfunctions are normalized such that max [p] = 1      47 

9 Effect of changing the wake amplitude parameter, Wamp, in equation (7) on 

the stability characteristics of modes I and II. (a). Sample hybrid mean 

velocity profiles showing the effect of changing Wamp, (b). Instability growth 

rates and phase velocities for mode I, (c). Instability growth rates and phase 

velocities for mode II      48 

31 



10 Effect of changing the wake width parameter, Wwid, in equation (7) on the 

stability characteristics of modes I and II. (a). Sample hybrid mean velocity 

profiles showing the effect of changing Wwid, (b). Instability growth rates and 

phase velocities for mode I, (c). Instability growth rates and phase velocities 

for mode II      49 

11 Effect of changing the wake offset parameter, W0ff, in equation (7) on the 

stability characteristics of modes I and II. (a). Sample hybrid mean velocity 

profiles showing the effect of changing W0jf, (b). Instability growth rates and 

phase velocities for mode I, (c). Instability growth rates and phase velocities 

for mode II      50 

12 Instability growth rates of the first two Rossiter modes as a function of the 

vorticity thickness, Sw      51 

13 Effect of changing the vorticity thickness parameter, 8W, in equation (7) on the 

stability characteristics of modes I and II. (a). Sample hybrid mean velocity 

profiles showing the effect of changing 5W, (b). Instability growth rates and 

phase velocities for mode I, (c). Instability growth rates and phase velocities 

for mode II      52 

14 Experimentally measured mean velocities (o) fitted using the equation for the 

classical tanh-type profile (6) or the hybrid profile (7) ( ), as applicable. 

Starting at the bottom, which shows the baseline profile, each successive 

mean profile is shifted by one unit in the transverse (Y) direction in order 

to facilitate ease of viewing, (a). Mean profiles and curve fits for locations 

'A. x' in Table I, (b). Mean profiles and curve fits for locations 'B.x' in table 

I. Profiles measured at z = 0, x = 0.08 for M = 0.60      53 

15 Experimentally measured mean velocities (o) at various streamwise locations, 

fitted using the equation for the classical tanh-type profile (6) or the hybrid 

profile (7) ( -), as applicable, (a). Baseline configuration, (b). Configura- 

tion A.l, (c). Configuration A.2, (d). Configuration A.4, (e). Configuration 

A.6. Profiles measured along the streamwise direction at z = 0 for M = 0.60. 

Refer to Table I for the configurational details      54 

35 



16 Instability growth rates of (a). Mode I, and (b). Mode II, for the curve fits 

to the experimentally measured mean velocities shown in figure 14(a). Refer 

to Table I for configurational details      56 

17 Instability growth rates of (a). Mode I, and (b). Mode II, for the curve fits 

to the experimentally measured mean velocities shown in figure 14(b). Refer 

to Table I for configurational details      57 

18 Maximum growth rate of instability mode II of experimentally measured pro- 

files and synthetic profiles as a function of the vorticity thickness parameter 

6U      58 

19 Integrated growth rates of instability modes I and II for the first two Rossiter 

mode frequencies. Refer to Table I for the configurational details      59 

36 



Tables 

37 



Configuration x/d g/d 
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FIG. 1: Schematic of the cavity resonance generation mechanism. 

40 



Slot Nozzle V. 

20.35 

Hypodermic 
stagnation 
probe 

t t 

FIG. 2: Schematic of cavity resonance experiments along with coordinate axes location and orien- 
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characteristics of modes I and II. (a). Sample hybrid mean velocity profiles showing the effect of 

changing 8W, (b). Instability growth rates and phase velocities for mode I, (c). Instability growth 

rates and phase velocities for mode II. 
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FIG. 14: Experimentally measured mean velocities (o) fitted using the equation for the classical 

tanh-type profile (6) or the hybrid profile (7) ( ), as applicable. Starting at the bottom, which 

shows the baseline profile, each successive mean profile is shifted by one unit in the transverse (Y) 

direction in order to facilitate ease of viewing, (a). Mean profiles and curve fits for locations 'A.x' 

in Table I, (b). Mean profiles and curve fits for locations 'B.x' in table I. Profiles measured at 

z = 0, x = 0.08 for M = 0.60. 
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FIG. 15: Experimentally measured mean velocities (o) at various streamwise locations, fitted using 

the equation for the classical tanh-type profile (6) or the hybrid profile (7) ( -), as applicable. 

(a). Baseline configuration, (b). Configuration A. 1, (c). Configuration A.2, (d). Configuration A.4, 

(e). Configuration A.6. Profiles measured along the streamwise direction at z = 0 for M = 0.60. 

Refer to Table I for the configurational details. 
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FIG. 16: Instability growth rates of (a). Mode I, and (b). Mode II, for the curve fits to the 

experimentally measured mean velocities shown in figure 14(a). Refer to Table I for configurational 

details. 
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FIG. 17: Instability growth rates of (a). Mode I, and (b). Mode II, for the curve fits to the 

experimentally measured mean velocities shown in figure 14(b). Refer to Table I for configurational 

details. 
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FIG. 18:  Maximum growth rate of instability mode II of experimentally measured profiles and 

synthetic profiles as a function of the vorticity thickness parameter 6W. 
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FIG. 19:  Integrated growth rates of instability modes I and II for the first two Rossiter mode 

frequencies. Refer to Table I for the conhgurational details. 
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